If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+35x+17=0
a = 18; b = 35; c = +17;
Δ = b2-4ac
Δ = 352-4·18·17
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-1}{2*18}=\frac{-36}{36} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+1}{2*18}=\frac{-34}{36} =-17/18 $
| 2(10-7x)=-22 | | 2+2x=-52 | | 4x+24=4x+8 | | y=53-7 | | 6x-33/3=3 | | y=52-7 | | 21a+15=32 | | 5y-7=-25-4y | | 7n-1=-6+6n | | 2(7e+1)=2(4e-2) | | 3x+1,5=8x-7 | | -5x+20=9-6x | | 5^x-1=45 | | -13+3a=-7+5a | | y+(-3)=-29 | | -8c+3=21 | | 1/3y+y=12 | | 5/8(8x+32)+1=1/2(12x-2)+15 | | h^=36 | | 5x+3=7-5 | | -2x+5=x+3,5 | | 88+x=123 | | -9k-6=84 | | 11-8x=3x | | 0=190-x+(x/4) | | -2j+35=39 | | 15=27n | | (x-6)/4=10 | | x=190+(x/4) | | 5u-2u=9 | | _2x+5=x+3,5 | | 2(x-4)-3=5x-3-11 |